Multivariate Lagrange Interpolation at Sinc Points Error Estimation and Lebesgue Constant

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lebesgue constant for Lagrange interpolation on equidistant nodes

Properties of the Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that the Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover an integral expression of the Lebesgue function is also obtained. Finally, the asymptotic behavior of the Lebesgue constant is studied.

متن کامل

On Multivariate Lagrange Interpolation

Lagrange interpolation by polynomials in several variables is studied through a finite difference approach. We establish an interpolation formula analogous to that of Newton and a remainder formula, both of them in terms of finite differences. We prove that the finite difference admits an integral representation involving simplex spline functions. In particular, this provides a remainder formul...

متن کامل

Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation

The barycentric form is the most stable formula for a rational interpolant on a finite interval. The choice of the barycentric weights can ensure the absence of poles on the real line, so how to choose the optimal weights becomes a key question for bivariate barycentric rational interpolation. A new optimization algorithm is proposed for the best interpolation weights based on the Lebesgue cons...

متن کامل

A Multivariate Form of Hardy's Inequality and L P -error Bounds for Multivariate Lagrange Interpolation Schemes

The following multivariate generalisation of Hardy's inequality, that for m ? n=p > 0

متن کامل

On the Lebesgue Function of Weighted Lagrange Interpolation. Ii

The aim of this paper is to continue our investigation of the Lebesgue function of weighted Lagrange interpolation by considering Erdős weights on R and weights on [ 1;1]. The main results give lower bounds for the Lebesgue function on large subsets of the relevant domains. 1991 Mathematics subject classification (Amer. Math. Soc.): 41A05, 41A10.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics Research

سال: 2016

ISSN: 1916-9809,1916-9795

DOI: 10.5539/jmr.v8n4p118